

NovoCrete® soil stabilization technology ahead of its time

Content

Initial situation The solution The result 10 arguments for NovoCrete®

Typical damages when using conventional technology

NovoCrete The solution

The innovative NovoCrete® technology

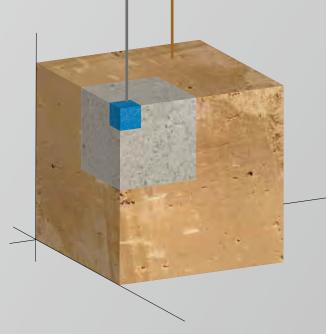
- > NovoCrete[®] is a white powder made from 100 % mineral components
- > Manufactured in Germany
- > Used as an additive to traditional Portland or composite cement
- > Provides higher load bearing capacity and higher tensile strength as well as an improved modulus of elasticity
- > PH levels will be neutralized and water impermeable layers can be built
- > Non-toxic and not harmful to health
- > Recyclable up to 100 %

Effectiveness

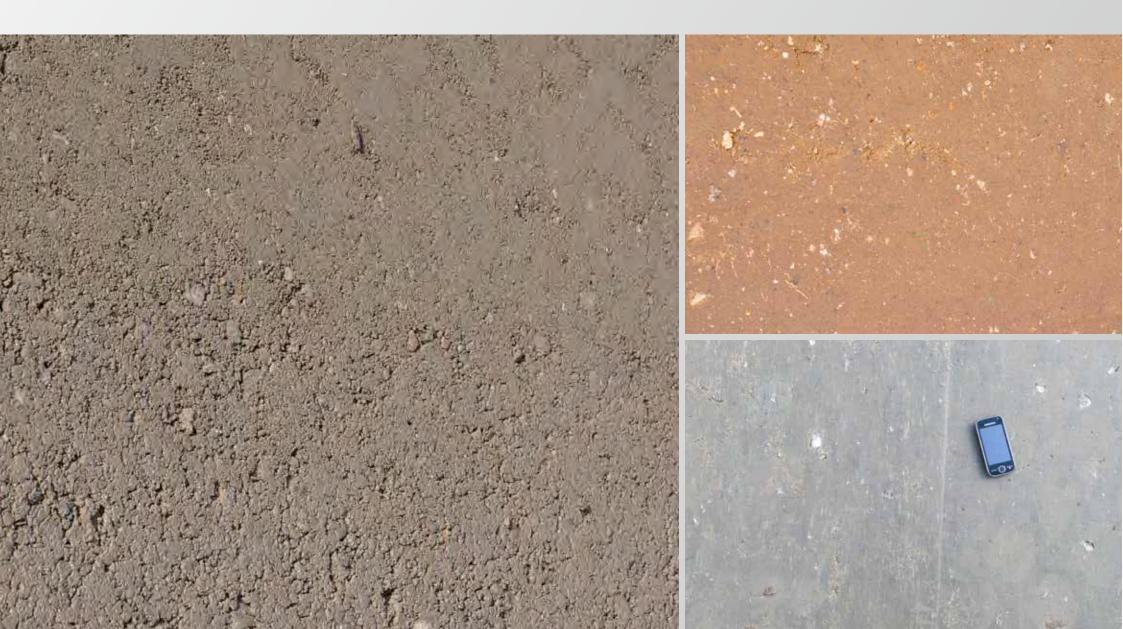
NovoCrete[®] is added to cement with a share of 2 % and mixed together with the in-situ soil material.

By adding water NovoCrete[®] increases the formation of crystalline structures during the cement hydration process.

90% in-situ soil


10% cement including 2% NovoCrete®

Untreated cement: open pore structure



Treated cement with NovoCrete[®]: closed dense structure

Perfect surface of the stabilized layer

Argument no. 1

Manifold areas of use

NovoCrete[®]

1. Broad Range of Applications

Streets and Lanes

> road construction

NovoCrete[®]

- > motorway construction
- > footpaths
- > cycle paths
- > forest trails
- > agricultural roads
- > industrial access roads
- > verge stabilization
- > storage areas

Areas

- > installation of base courses underneath indoor surfaces
- > general foundation
- > car parks
- > container parking areas
- > logistics centres
- > harbour sites
- > wharves
- > storage areas for wood, metal etc.
- > bio-gas plants
- > silage storage areas
- > chaff storage
- > landfill sights

Special applications

- > railway tracks
- > tunnel and drainage system construction
- > slope stabilization
- > bank stabilization
- > slope reinforcement, grout
- > deep foundation replacement

Argument no. 2

Possible savings

NovoCrete[®]

Conventional soil stabilization vs. NovoCrete® comparison

Conventional construction NovoCrete® construction 24 wearing course 20 binder course 12 wearing course 8 road base with without 0 3:1 **NovoCrete**® layer 30 excavating and combined anti-frost and soil exchange base layer no excavating and no soil exchange 70 - 80

Advantages at a glance

NovoCrete°

- > 90 day hydration process: next to no cracking with binder from up to 14%
- > During the hydration process, long crystal needles are formed, allowing very high bearing strengths
- > With a binder content of >10%, after 1 to 2 days values of at least 150 MN/m² can be attained, and can continue to increase for up to 90 days
- > The stabilized layers show low bending tensile strength. Concrete anchors may be installed
- > Water does not penetrate, nor any other fluid, into the stabilized layers, guaranteeing safety from frost
- > Low clean up costs at accidents involving leaked noxious matter, as liquids remain on the surface (no absorption)
- > Longer lifespan as it is water-resistant, and increased acid and salt resistance

Advantages at a glance

NovoCrete[®]

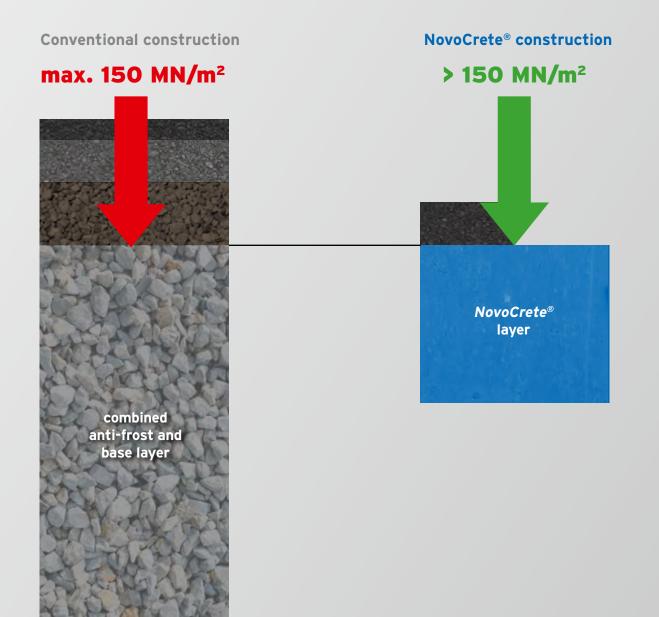
- > Lifespan can be prolonged by laying a thin wearing course
- > No problems with loamy or clayey soils containing high levels of sulphur associated with high cement content
- > Grainy sands or organic material can be reinforced
- > Soils with high levels of salt can be stabilized
- > Stabilizing contaminated soils is possible
- > No problems from frost, thaw or changes in conditions, as waterresistant base courses may even be constructed from in-situ soils
- Stabilization measures can be customised and adapted to particular soil conditions
- > Repair work can be significantly reduced
- > Restoration of surfaces to original condition is possible

Example calculation Ø costs*/m²

Layers	conventional	NovoCrete®
asphalt surface layer	4 cm = XXXX €	8 cm = XXXX €
binder course	8 cm = XXXX €	-
NovoCrete [®] -layer	-	30 cm = XXXX €
asphalt base course	12 cm = XXXX €	-
base and frost protection course	60 cm = XXXX €	-
total costs	XXXXXX €	XXXXXX €

*Costs always as a function of national / regional parametres

With or without top layer


Argument no. 3

High Heavy Load Capacity

3. High Heavy Load Capacity

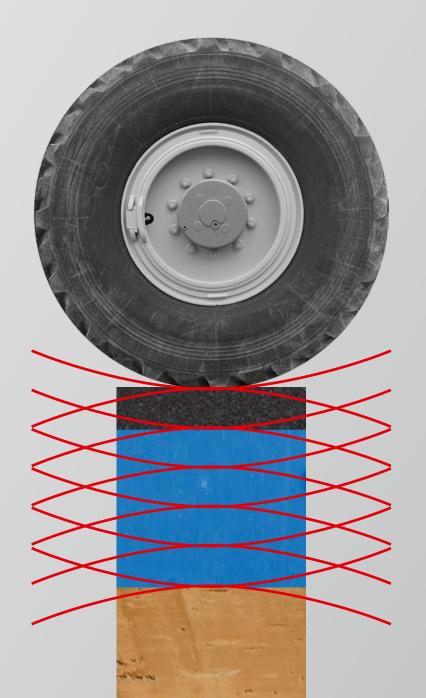
Compared

NovoCrete°

Minimum bearing capacity to achieve (dependent on the project)

NovoCrete[®]

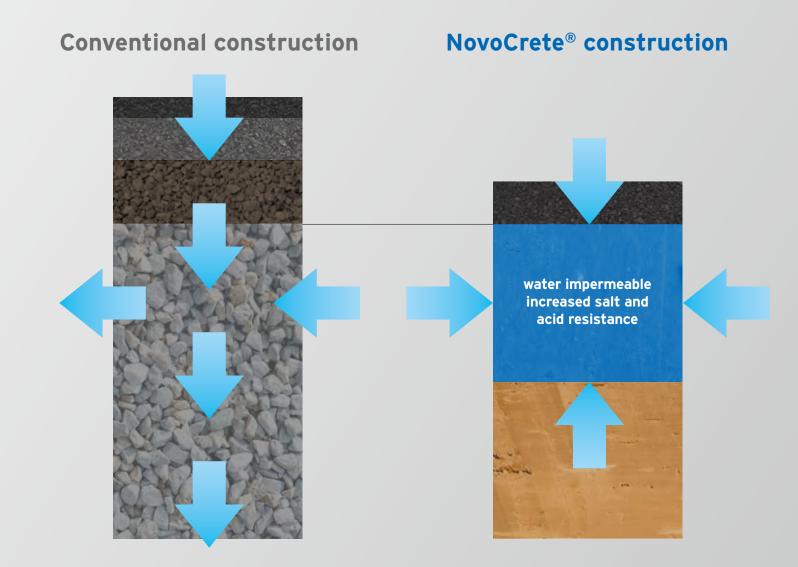
3. High Heavy Load Capacity



Erection of concrete elements directly on the NovoCrete® layer

High flexibility

The stabilized layers generate a very high tensile strength and a high flexibility which allows the absorption of vibrations e.g. caused by heavy truck traffic.



Argument no. 4

Leak Proof Surfaces

Waterproof, increased acid and salt resistance

NovoCrete°

4. Leak Proof Surfaces

Water impermeability depending on soil type

NovoCrete[®]

Soil type	Amount of binding agent*	Milling depth	Water impermeability of the NovoCrete® layer
wide-graded gravel narrow-graded gravel intermittently-graded gravel wide-graded sand narrow-graded sand intermittently-graded sand	from 140 kg/m ³ to 180 kg/m ³	0,25 - 0,50 m	10- ⁶ to 10- ⁹ (m/s)
gravel-silt mixture gravel-clay mixture sand-silt mixture sand-clay mixture	from 170 kg/m ³ to 200 kg/m ³	0,30 - 0,50 m	10- ⁶ to 10- ⁹ (m/s) 10- ⁷ to 10- ⁹ (m/s)
slightly plastic clay slightly plastic silt medium plastic silt medium plastic clay highly plastic clay	from 180 kg/m ³ to 220 kg/m ³	0,30 - 0,50 m	10- ⁸ to < 10- ⁹ (m/s) < 10- ⁹ (m/s)

The final amount of binding agent and the milling depth must be determined for every project in depandance of the traffic volume, the climatic conditions, and the results of respective suitability tests.

* Normally binding agent consists of 98 % standard cement + 2 % NovoCrete®

4. Leak Proof Surfaces

Θ

8

waterproof = frost protection = no potholes

Argument no. 5

Adaptable to most soil types

Adaptable to most soil types

NovoCrete[®]

- > Clayey, silty and sandy soils can be stabilized
- > Soils with a share of organic matter up to 15 % can be stabilized
- > Soils high in salt content can be stabilized
- > Suitable to stabilize and immobilize contaminated soils at the same time

Amount of binding agent depending on soil type

NovoCrete[®]

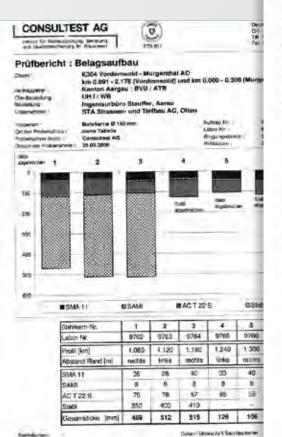
Soil type		Initial water content	Amount of binding agent *	Compressive strength N/mm ²	
Non cohesive soils	wide-graded gravel narrow-graded gravel intermittently-graded gravel wide-graded sand narrow-graded sand intermittently-graded sand	from 0 to 10/15 %	from 140 kg/m ³ to 180 kg/m ³	7 days - 28 days from 3,0 to 9,0	
Mixed grained soils	gravel-silt mixture gravel-clay mixture sand-silt mixture sand-clay mixture	from 0 to 15/30 %	from 170 kg/m ³ to 200 kg/m ³	7 days - 28 days from 2,5 to 6,5	
Cohesive soils	slightly plastic clay slightly plastic silt medium plastic silt medium plastic clay highly plastic clay	from 0 to 30/35/45 %	from 180 kg/m ³ to 220 kg/m ³	7 days - 28 days to 2,0 to 4,5	
Organic soils	Mould Organic clay Organic silt			f respective suitability tests the applied, maybe soil must be	

Argument no. 6

Certified quality

Digging, soil samples, suitability tests

- > Geological expertise
- > Suitability tests
- > Laboratory examinations
- > Construction site survey


Quality assurance

- > Creation of specimen on the site
- > Execution of a dynamic falling weight drop test
- > Testing by using a Troxler sonde
- > Execution of a static load plate bearing test

6. Durability **NovoCrete**[®]

Drill core analysis

12,10,2599

eld DaelMan-Two	ing the Balant	- 1	\$75.02	-		
nüfbericht : E		ung der B				Pit
Here I		demwald - k				-
-		2175 (Von Largeu : BVU		a) and on	0.000-9-1	
INTERNET	UH+1/W					
Liking		rburo Stauth				1011
		200				
obornati n der Propulsatime - obernation durch - Nationalise Propulsation	Same Ten Consulted		•		1	100
toernalinen (k.e.r.)	Same Ten Consulted	de Ritignardh A AG	an and a second	_	1	130
n der Propunalitier- openalitier durch (Normalie Properation)	Consulties	de Ritignardh A AG	_	vertites	-	130
r der Propulsatione - opensationer (Austri) Naminalia Propertatione Vectorer	Same Ten Consulted 21.05.200	de Ritignardh A AG	matering	v-41-4	-	130
r der Propulsatione - opensationer (Austri) Naminalia Propertatione Vectorer	Littor 19.	AG AG	giuzzen Hilte	1.	Notocree	130
n der Propensitivne - ropmen imm durch (Normalise Property) Historien Historien (g	Same Ten Consulted 21.05.200		Hone 140%	1.02	nstacte Agriej	130
n der Properteiltime - operatione durch - Noternalise Propertation Historiensing Bistoriensing 1 closeff	Lucor S7402	AU AU /	140% 140% 140% 147.0	1.0	Natacras National 2303	130
n der Propertalitier obernahmen (kurtri) Networke Propertalitier Network Billiosener Vog 1. cibellie 1. cibellie 1. cibellie	Littor 19.	AG AG (mm) (mm) (48.0 148.0	140% 1747.0 147.0	1.0 1.0 1.0	Natacha Parel 2303 2275	130
n de Propositione - roberna en ductri, Normalia Propertativa Notaen Notaen Notaen Comi Comi Comi Comi Comi Comi	54mil 1m Consultation 241063300 Lator 1%. 5762 9763	AU AU 148.0 148.0	Hone (Vm) 147.0 147.0 147.0	1.60 1.0 1.0	Natocrae Ingent 2303 2275 2373	130
n de Propued me menor Network in Autor Network Properties Network Network Network Network Network Statistics Statist	Lucor S7402	AG 148.0 148.0 148.0 148.0	140m 190m 147.0 147.0 147.0 148.0	1.68 1.0 1.0 1.0 1.0	Natoche Igan) 2303 2275 2373 2279	130

stigke	12	(3)				wald - Mu 176 (Vorde	IS Estigs + Desection - 0.308 (Murgenithal)				
		h/kg	where .	Kanton Aargau - BVU / ATB / UH I / KV					Autors-He 2364-09		
0-0.3	XI (Nurge			L0817WB							
4 0	Autophi: Lapp-Ar., Unitation Unitation Deployment Voice		12.86.2009 Alathe Taballik 9 - 20 One Antheliumilan Material + Tearetabl + 54 kg/m ² BM					H(D-Gymell 5.7*) (14) Roberts Trademic Michine 2024*1 Rep ¹⁴ (discussed)			
	ladament :	Talant	PE	1	ANR .	Datadre	Decosar	VERSION D	Vescelage	Mittig-segret	
		peri	1.27	10AU	l neres	haint.	(invert	1956	.01	(%)	
-	-	100	- 30	- 1	TREAT THE	2457	2327	8.0	09.7	101	
-	1	2	- 20	-	x	2516	2362	8.5	101.2	123	
00789		15	90 × 15 m	-	8	2445	2208	0.4	98.5	- 29	
- 1		4		x	- 1	2404	2397	6.7	100.1	117	
Pres	474	5	31			2361	2229	6.9	95.5	68	
103	196.4	5		-	c	2385	2225	7.2	95.3	91	
275	248.7	7	31 + 12 m			2509	2345	7.0	100.5	125	
1/3	251.9	. 8	1000	- kr		2459	2205	7.6	98.3	116	
-		Ш	32	×		2457	2288	7.4	98.0	111	
279	1925	10	1.1.1		×	2448	2314	5.8	99.1	-94	
2661	145.3	11	20日15日	-	4	2483	2325	5.8	29.5	114	
247	142.2	12		τ.		2515	2850	7.0	100.7	127	
-	-	13	凝	. 1	-	2457	2303	6.7	- 30.7	105	
290		14	100		- x	2382	2278	5.0	.97.8	73	
env	-	15	対・福岡		× -	2464	2234	7.9	97.8	117	
		16	1.1			2498	2321	7,4	00.5	122	
		-17	- 34	X	_	2381	2244	6.1	65.1	21	
		18	Sec. 2			2408	2300	4.7	98.5	73	
		19	34 + 15 +		K.	2368	2292	4.2	96.2	64	
or a local distribution of the local distrib		20		x		2433	2287	6.4	38.0	59	

CONSULTEST AG WATE WEIGHTS, Dealers

BH 470 010#

Della Chi 14 Fat

Cature Unterschill Gemeinschilter 12 10 2505

Mitpoly	Vett	2449	2300	6.5	98.6	101.8
have have					L. L.	d.
AT The Value of	-Diameter	13.08.200	18	Learson	M.W	11417

(C)

Verdichtungskontrolle mit Troxler Isotopensonde

STE OR I

AND ONLY CONTRACT CONTRACT CONTRACT

Departement Bau, Verkshr und Um Aperung Tabau (Umbri 15 College + Gestechnik

NAME AND DOLD.

Argument no. 7

Sustainability

Virtually no maintenance

- > Solid base layer = longer life span of the road
- > No potholes to fill

NovoCrete[®]

Formation of cracks in the asphalt layer is decisively reduced

References on durability

NovoCrete[®]

Unterlunkhofen 2013, built 2006

Vordemwald 2013, built 2007

Alikon 2013, built 2006

Remigen 2013, built 2007

Argument no. 8

Environment-friendliness

Advantages for the environment

- > No chemistry, only mineral components
- > Contaminated soils can be stabilized and immobilized in one procedure
- > Able to reclaim areas back to original state
- > No soil exchange material
- > No need for landfill sites

NovoCrete[®]

- > No gravel/aggregate material required
- > Less shipping volume and site-traffic
- > Without top layer it is possible to achieve an optical adjustment to the environment due to the similar color of the soil

Argument no. 9

Simple Application

Procedure steps

NovoCrete°

Preliminary work > Milling of the old asphalt layer

- > Breaking up of old asphalt layer by using a Grubber (optional)
- > Mixing of asphalt/gravel material by using a stone crusher (optional)

Stabilisation > Spreading of binding agent by using a spreader vehicle

- > Milling of cement-/NovoCrete® mixture
- > Compaction with a steel drum roller (8 12 t)
- > Preparation of the fine level by using a Grader
- > Irrigation while milling and after compaction

Top layer> Fitting-in of the new asphalt layer after 24 hours

Milling of the old asphalt layer

Breaking the asphalt layer with a grubber (optional)

Crushing of asphalt/gravel material with a stone milling machine (optional)

Applying the binder with a spreader

Applying NovoCrete[®] with a mobile spreader

Milling of the cement/NovoCrete® mixture

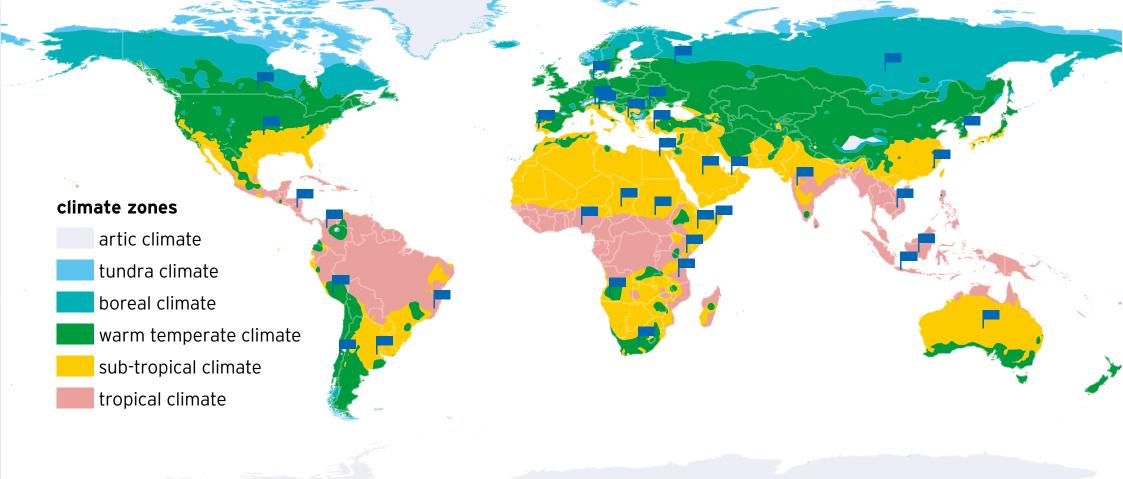
Compression with a smooth drum roller (8-12t)

NovoCrete[®] 9. Simple Application

Creating the fine leveling with a grader

Watering while milling and after compression

Integration of the new asphalt layer already after 24 hours



Argument no. 10

Worldwide acceptance

NovoCrete[®] - usage worldwide

Thank you for your attention!

www.novocrete.com

AUTARK Energy & Infrastructure Solutions GmbH & Co. KG Brienner Str. 9, D-80333 München, Germany, Phone +49 (0) 89-290 97 286, Fax +49 (0) 89-290 97 446 www.autark-energy.com, moormann@autark-energy.com

